
White Paper: Processor Affinity 1/16 © TMurgent Technologies

TMurgent Technologies

White Paper
Processor Affinity

Multiple CPU Scheduling

November 3, 2003

White Paper: Processor Affinity 2/16 © TMurgent Technologies

Introduction1

The purpose of this paper is to examine the role of “processor affinity”. In this
paper I will explain:

• What processor affinity is.
• How the operating system uses processor affinity.
• Situations when manipulation of processor affinity has been used.

Finally, I will present TMurgent Technologies view on the appropriate and in-
appropriate manipulation of processor affinity on Windows 2000 Server and
Server 2003.

Before we begin a note of caution:

Playing with processor affinity on a production system should never be
done. We often find that otherwise intelligent human beings learn “just
enough to be dangerous” and try to use that knowledge. We strongly
recommend that first, you read the entire paper – especially our view on
in-appropriate manipulation of processor affinity. Second, after you have
done that, if you are still excited about playing with processor affinity
please do it on a test system that is not in production.

1 It is inevitable that a technical paper such as this will use terms that are Trademarks of other companies.
Microsoft, Windows, SQL Server, IIS, and a variety of operating system names are trademarks of
Microsoft Corporation. Citrix, MetaFrame, ICA, and SpeedScreen are trademarks of Citrix Systems.
SysInternals is possibly a trademark of WinInternals. TMuLimit is a trademark of TMurgent Technologies.

White Paper: Processor Affinity 3/16 © TMurgent Technologies

I - What is “Processor Affinity”
In a multi-tasking operating system, the work to be performed is broken into
discrete components, called tasks. These tasks are semi-independent portions of
the total work, that may be scheduled to be executed when needed, then
swapped out so that another task may run as appropriate. (This topic is
discussed in more detail in our White Paper: Scheduling Priorities, Everything you
never wanted to know about OS Multi-Tasking
http:/ /www.tmurgent.com/SchedulingWP.htm).

In the Windows Operating System, as in many modern multi-tasking OSs, the
work to be performed is broken into Processes and further into Threads. A
process is a complete unit that uses a virtual memory space. A process is usually
(but no always) analogous to an application program. For example, executing
Calc.exe results in a single process. Same with Paint.exe, or iexplore.exe. A
process breaks down into one or more units called Threads. The threads of a
process share the same virtual address space, but run semi-independently.
Thus, while one thread is waiting for a file to be read-in from disk, another
thread can be handling mouse and menu activity from the user. A thread is the
unit that the operating system schedules to run from time to time.

On a Symmetric Multi Processor (SMP) system, in popular use in servers today,
the OS scheduler must not
only decide when a thread
can run, but where it
should run. Processor
Affinity is the term used for
describing the rules for
associating certain threads
and certain processors.
The term Symmetric in SMP
indicates that any unit of
software should be able to run on any processor – there is no “master
processor”.

Windows NT, 2000, XP, and 2003 are all designed for SMP operation. Hardware
vendors targeting this market develop to SMP as well (it is required to get the
Microsoft sticker). As explained in Section I I , some old device drivers may not
be SMP aware (but not modern ones).

I t is possible, even normal for some processes, for more than one thread of a
process to executing at the same time. CPUStres.exe, from the Windows 2000
Server Resource Toolkit, makes a good example of this. I f you want to try this,
you can download the tools from the toolkit for free from the Microsoft TechNet

Asymmetric Multi Processor (ASMP)

In an Asymmetric Multi Processing System the processors
are, or at least are treated, differently. If the hardware is not
symmetric, this could mean that some processors do not have
access to all memory, or all external devices. If the hardware
is SMP capable, the operating system can implement ASMP.
In this situation, typically the OS core runs constantly in one
selected processor, with additional operating system and user
tasks running in the remaining processor(s).

White Paper: Processor Affinity 4/16 © TMurgent Technologies

site. CPUStres allows you to start one or more threads that will consume a
complete CPU each. As shown in Figure 1 - CPUStres Example, you can
select the number of active threads (0 through 4) by checking the Active check-
boxes as desired. I f you set the Activity setting to an active thread to
“Maximum”, the thread will attempt to run all of the time. A single thread may
ONLY be executing in a single processor at a time. Used on an N-way system (a
system with “N” processors), each thread will consume close to (100/N) percent
CPU. Thus the settings shown would consume 100% of a dual processor
system, with one of the two threads pretty much constantly running in each
processor.

Figure 1 - CPUStres Example

The operating system uses Processor Affinity when the OS task scheduler assigns
threads to run in processors. As we will see, this affinity may be a hard set rule
(thread A may only run in processor # 3) or it may be a preference (thread A
should try to be scheduled into processor # 3 first). By default each
process/ thread has affinity for every processor in the system.

White Paper: Processor Affinity 5/16 © TMurgent Technologies

II - How the Operating System Uses Processor Affinity
As mentioned earlier, the Windows Server Operating Systems are all SMP
operating systems. So, at least in theory every thread may be scheduled into
any processor at any time. Let’s look at what happens if we try to run a single
thread constantly on an otherwise calm system.

Figure 2 shows a view of the Task Manager on a dual processor system. As can
be seen, the system was initially rather idle, after which we activated one thread
at the maximum level. The total CPU consumed was 50% (shown on the left),

which is as expected (100/2 = 50). Looking at the CPU History Graph is
revealing. This graph is showing CPU activity separately for each processor. As
shown, the two CPU used different amounts of CPU.

Figure 2 - Scheduling on one busy thread

White Paper: Processor Affinity 6/16 © TMurgent Technologies

Figure 3 - Scheduling one busy thread (again)

In Figure 3 , we ran the same test again a few moments later. Here we see the

total is 50%, however this time the scheduler placed the thread into the second
processor more often. What accounts for the behavior shown?

I f you expected to see one of the processors used 100% and the other at
roughly 0%, this is explained through normal thread scheduling. First, we must
realize that no thread is allowed to just constantly run. Threads normally run for
a short while and then voluntarily yield. The yield may be because it is sleeping
on a timer, waiting for input from the user, waiting for a file to read in, or
waiting for access to a shared resource (such as a shared memory lock).
CPUstres, when set for maximum does not yield voluntarily, but is caught by the
system if it does not voluntarily yield within a given time frame (a value
determined from the quantum limit table, but roughly 60-240ms).

Even if the system is at a 0% load, there are threads running. Very briefly some
system threads will wake up and do a very small amount of processing. Even
when there are none of those, there still is the “System Idle Thread” (or “Zero
Page Thread” as it is sometimes referred). The System Idle Thread is scheduled
by the scheduler whenever there is no other task to run in a processor. Several
important housekeeping activities take place there. When the scheduler tries to
schedule a normal process and one processor is busy while the other is free (the
System Idle Thread is running), and no special processor affinity has been
requested, it will schedule the task into the free processor.

White Paper: Processor Affinity 7/16 © TMurgent Technologies

This explains why it is not a 100/0 split, but fails to explain why it isn’t at least
near to a 50/50 split, as in random placement. To understand why, we need to
introduce the concept of a preferred processor.

II.1 Preferred Processor
The Windows task scheduler uses a mechanism called the preferred processor.
Each thread that is not
currently running in a
processor has a “preferred
processor”. The scheduler
uses this as a form of
processor affinity when a
thread is ready to be
scheduled into. The
scheduler will schedule the
thread into its preferred
processor if that processor
is free. I f that processor is
not free, it will schedule
the process into any other
free processor. This is
done for performance
reasons (see sidebar). The
preferred processor of a
thread is the processor it last ran in. So on a system that is not overly busy,
threads tend to be scheduled into the same processor more often than random
occurrence.

Of course, the timing
of other activities can
affect the likelihood of
a preferred processor
miss. When a
preferred processor
miss occurs, the
preferred processor
for the thread is reset
to the processor it is
scheduled into next.

By the way, the OS
will never try to move

Preferred Processor

In an SMP system, although each processor has access to all
memory, each processor has its own cache copy of certain
portions of memory (There are both Layer 1 and Layer 2
caches, typically). When the processor can retrieve code or
data from that cache instead of going over the memory bus to
slower DRAM based main memory, it will perform faster.

The scheduler uses this Preferred Processor (also called Ideal
Processor) method of affinity to increase the odds of cache
hits to improve performance.

There are implications on this for Hyper-Threaded
processors with Windows Server 2003, where pairs of logical
processors share a physical processor – and a single L1/L2
cache. We haven’t found proof on this yet, but we believe the
2003 scheduler will try to schedule to the preferred processor
first, and then try any logical processor on the same physical
processor.

Non Uniform Memory Access (NUMA)

A Non Uniform Memory Access System uses a design that has
multiple bus/memory subsystems in an attempt to reduce the
bottleneck of a single bus/memory system. In a NUMA design,
every processor has access to all memory; however, each processor
has faster access to a portion of the memory, and slower access to
the rest. The difference in speed is normally no more than 1:3.
While NT and 2000 are not “NUMA aware” (but will run non
optimally), Server 2003 is NUMA aware.

We will not get into NUMA in detail here since it is only in use in
very high end systems, however the 2003 scheduler is aware as to
what CPUs are in which nodes and will try to first schedule into the
preferred processor, then into any processor that is in the same
NUMA node .

White Paper: Processor Affinity 8/16 © TMurgent Technologies

Figure 4 - Process Affinity in Task Manager

a currently running thread out of a processor so that a different thread with that
as the preferred processor may run in that processor. Nor will a thread wait until
it’s preferred processor becomes free. I t will be scheduled into any free
processor available. You can think of the preferred processor as a kind of a hint
to the OS scheduler. I f all else is even, try to put it here.

11.2 Process Affinity via Task Manager
The Windows Task Manager, as well as third party tools from folks such as
SysInternals (www.sysinternals.com) allow you to view and modify with Affinity
on a process level. To view process affinity in the Task Manager, you need to
be on a multi-processor machine. Click on the “Processes” tab to expose the list
of processes running in the system. I f you right click on a line in the list, a pop-
up menu appears. One of the items in that menu on a multi-processor system is
“Set Affinity”. I f you select a user process you will be presented with a dialog
similar to that of Figure 4 . Note that even logged in with administrative
privileges, one cannot set (or view) the processor affinity of system processes –
it must be a user level task. In our case, we selected our friend CPUStres.

The display shows a checkbox for each
possible CPU. Note that the number of
boxes shown that are disabled may
depend upon the number of CPU the
version of the OS is licensed for. In this
case, we are running Windows 2000
Advanced Server which supports up to 32
processors. We have two installed, thus
CPU 0 and CPU 1 are active checkboxes.

By default, all processes may run in any
processor. This includes user as well
as system processes. The task
manager does not allow you to modify
the process affinity of system processes to ensure system stability. I f high
priority system threads are prevented from running due to process affinity, the
system could lock up.

We chose to clear the checkbox on CPU 0 for the CPUStres process, allowing it to
run threads in CPU 1 only. The results are shown in Figure 5 . As soon as we
set the processor level affinity, the first processor (CPU 0) became almost idle,
while the second processor (CPU 1) became 100% busy. Because the system is
an SMP system without any non-SMP drivers, we could have just as easily
selected affinity for CPU 0.

White Paper: Processor Affinity 9/16 © TMurgent Technologies

While fun to play with, the Windows Task Manager is rather limited. I t is a run-
time only tool, so while you can change a currently running process, you cannot
use it to set the affinity of an application every time it runs. To do that you need
some add-on software (see sidebar).

The Windows Task Manager
also only works on affinity of
a process basis. This is
convenient, as any new
threads that start after you
set the affinity will inherit the
process affinity setting.
However it lacks the
flexibility of setting affinity on
a per thread basis.

For example, take our friend
CPUStres. The process
consists of a thread that runs
the GUI (Graphical User
Interface), plus a thread for
each activated checkbox. In
our situation depicted in Figure 5 , the process consists of the GUI thread and
one CPU hog thread. The GUI thread must now compete for cycles with the

Figure 5 - CPUStres with Processor Affinity

Imagecfg.exe
Microsoft does have a tool for permanently setting the
processor affinity associated with an executable each time it
is run. Although not in the original Windows 2000 Server
Resource Toolkit, there is a supplement, called “Windows
2000 Server Resource Kit Supplement One”. The tool does
not appear to be included in the Microsoft downloads
anywhere, so you probably need to purchase the supplement.

To set processor affinity, you run imagecfg.exe with the –a
option, followed by an affinity mask (a hexadecimal
formatted number) and the fully qualified name of the
executable. The bit mask is starts with CPU0 as bit one,
CPU1 as bit two, etc. For example:

Imagecfg –a 0x03 c:\tools\iexplore.exe
would allow iexplore to run on either CPU0 or CPU1.

The tool does not work on 16-bit executables and SHOULD
NOT EVER be used on kernel components. Although in the
2000 kit, the tool works on NT/TSE as well.

White Paper: Processor Affinity 10/16 © TMurgent Technologies

thread that is consuming all the CPU. In this example, using the mouse on the
GUI will still respond quickly because the GUI thread will be a higher priority than
the CPU hog thread. So while this is OK for this example – it is a very simple
example. Herein lies the conundrum
with manually assigning processor
affinity. I f you only consider that
these two threads may be running
you may believe you understand the
best solution. But what about the
other threads running in the system?
Even in our idle server with no
terminal server sessions running we
have over 600 threads. A better set-
up, if you need to assign affinity, would be to only assign processor affinity to
the CPU hog thread, and let the GUI thread roam to any available processor.

In a White Paper we released earlier this year, Perceived Performance
(www.tmurgent.com/PerceivedPerformance.pdf), we explain how the scalability
of a multi-user system is dictated by the performance perceived by the users.
That perception is guided by the responsiveness of mouse and keyboard
actions. We may be getting ahead of ourselves here, but none of us are really
smart enough to plan out an optimal fixed affinity plan for a server that works
under the varying workloads that will be presented.

Also keep in mind that while affinity can be used to keep a user process from
using certain processors, it cannot be used to guarantee a process exclusive use
of a processor. That is because of all those system processes that must have
affinity for all processors installed. These system processes will interrupt the
application you are trying to dedicate to the processor.

CPUStres Design Note
The design of the application is that there is one
thread for the GUI, and one for each active thread
checkbox. If none of the checkboxes are checked
a second thread is created that is idle.

You can see the number of threads present in a
task by adding the Threads column to the Process
Tab display of the Task Manager. Select the
menu ViewÆSelect Columns to add the column
to the display.

White Paper: Processor Affinity 11/16 © TMurgent Technologies

III - Situations Where Processor Affinity Has Been Used.
We can talk about four situations where fixed processor affinity has been used.
There no doubt have been others, however these two represent the “reasonable”
use of fixed processor affinity.

III.1 Legacy Device Drivers
Processor Affinity was necessary in the past with some device drivers, especially
on Windows NT. These drivers were generally written so as not to be SMP
aware, and locking them into a specific processor was a reasonable work-around
to get them functional. Typically, interrupts would be configured to only interrupt
a single processor (sometimes called Interrupt Affinity).

The lore of affinity was propagated over the years, especially in relation to LAN
card drivers, to a belief by some that the OS uses the first processor and that
these drivers should have affinity set to use the last processor.

While there may have been specific drivers that needed to be tied to the last
processor, it certainly was not because the OS needed to run in the first
processor. Such ideas fit in with having to wait two hours after eating before
swimming. (My mother insisted on such a belief for several years after we
moved to a house on a lake. Thank goodness she finally wised up!)

In any case, drivers that run on Windows 2000 and 2003 should not have affinity
issues. Certainly any driver that is certified (received Microsoft certification for
either OS) cannot have an affinity requirement. Microsoft has been very clear on
the requirements, and the driver must be able to execute in any processor.

Certainly from a performance perspective, you want the driver processing to
happen in as timely as fashion as possible. While the interrupt will occur nearly
immediately in any case (only a higher priority interrupt can prevent the driver
interrupt from immediately responding), modern driver software only executes a
minimal set of instructions from within the Interrupt Service Routine (ISR). Most
of the processing is deferred into a Deferred Processing Call (DPC). The DPC is
executed when a current running task in one of the allowed processors
completes its execution (i.e. either it voluntarily yields, or exceeds its quantum
limit). Clearly the more processors that are available to be selected, the less
delay in completing the processing of the interrupt request.

III.2 Single Process Anomaly
A second case for the use of fixed process affinity is as a cure for what I call the
single process anomaly. An example is a customer that runs a terminal server

White Paper: Processor Affinity 12/16 © TMurgent Technologies

for a number of users that are running the typical business applications – the
office suite, internet explorer, etc. They have one user, an engineer, which
needs to use a popular CAD package (application name withheld because it isn’t
the vendors fault. Any CAD half-decent package would act the same way).
Being very much into thin client computing it is necessary to run the CAD
application on the server, since it is the only device with the memory and
horsepower required.

When the user runs the application, however, the package uses multiple threads
simultaneously and even on a quad processor it will at times consume 100% of
each processor. Needless to say, the other users are not amused. By using
fixed processor affinity, you can restrict the CAD app threads to only run in one
or two of the processors, leaving the remaining processors to handle the needs
of the other users.

There is a saying that goes: “I f all you have is a hammer, everything starts
looking like a nail”. I f fixed processor affinity is all you have as your tool, it does
work OK. I t is not, however, the best tool for the job. Let us look at an
example.

In this example, we will assume we have a quad-processor system. The
administrator implementing a fixed affinity solution only has four choices, 4
processors (the default), 3, 2, and 1. By assigning the application an affinity of
one processor (for this example we will pick CPU 2), we ensure that at all times a
minimum of 75% of the processing power is available to the other system and
user processes. Meanwhile the CAD application is limited to a maximum of 25%
of the processing power. The CAD app still must compete with other threads for
that 25%. When the OS thread scheduler tries to schedule the CAD app, there
must be no equal or higher priority thread currently running in that processor.
The scheduler will not move a thread running in CPU 2 to another processor,
even if there is an idle processor and the ready CAD app has to wait.

A better solution would be to use the SuperMax capability of our TMuLimit
product. The Administrator
would have the flexibility of
assigning a maximum CPU
utilization at any percentage
level, not just multiples of
100/N. Because the application
is not restricted to a single
CPU, it could also avoid being
held ready when free
processors are available for
use. Finally, the solution

About TMuLimit
TMuLimit, implemented as a service, monitors and
controls applications automatically on a real-time
basis. While most applications are improved using the
Priority Management, applications that consume
unrestrained amounts of CPU, like CPUstres (or any
16 bit application) are better handled by a method we
developed to override the OS thread scheduler. We
called this method SuperMax.

You can find more information on TMuLimit at
http://www.tmurgent.com/TMuLimit.htm

White Paper: Processor Affinity 13/16 © TMurgent Technologies

scales when suddenly a second engineer needs access to the application. By the
way, TMuLimit does also provide support for Affinity assignment, however we
strongly recommend against using it.

III.3 The ICA Administrator Toolbar
In some installations of Citrix MetaFrame, the icabar (ICA Administrator Toolbar)
is set for fixed processor affinity. This is the toolbar that shows up on the right
side of the Administrator’s desktop (until the administrator disables it) with icon
shortcuts to the standard administrator programs associated with MetaFrame,
such as SpeedScreen or the ICA Management Console.

I cannot fathom a reason to assign affinity to such a benign tool, but there it is.
Because the tool never uses much CPU, I guess it does no harm either. Even if
the first thing you do is not to disable the toolbar.

III.4 SQL Server/ IIS
Administrators configuring Microsoft SQL Server will sometimes use fixed
processor affinity. The use is primarily been on systems that are also loaded
with additional processing requirements. As explained in “Administering SQL
Server” (http:/ /msdn.microsoft.com/library/default.asp?url= / library/en-
us/adminsql/ad_config_6rw2.asp) this is not a recommended practice.

I IS 6.0 actually includes an optional configuration setting to apply processor
affinity to worker threads. Given the large number of worker threads, we are
doubtful of the effectiveness of such a setting (but we have not tested it).

White Paper: Processor Affinity 14/16 © TMurgent Technologies

IV - TMurgent Technologies View on Processor Affinity.
We sometimes hear from customers that become interested in Affinity
Management. I have to admit being briefly infatuated with affinity for a short
period at one time. But as explained in this paper, especially in the situations in
Section I I I of this paper, we recommend against using processor affinity.

I f you still have drivers that require affinity, they are likely also destabilizing your
system in other ways. Such old drivers should be replaced at any cost.

Affinity can be used to limit a process, or guarantee other processes, certain CPU
levels. But it is not the best tool for the job. Such a solution sacrifices flexibility,
responsiveness, and scalability.

And finally, a fixed processor affinity solution cannot take into account the
different system conditions that will exist at different times. Process
management requires both measurement of how the system is behaving and
real-time adjustments in order to generate optimal peak performance.

Preferred Processor Affinity done by the Operating System does a somewhat
reasonable job of optimizing for processor specific cache. Assuming that Server
2003 schedules with a logical processor aware methodology such as we
suggested in the side note (see Preferred Processor) we also have the
optimum in the Hyper-Threaded and NUMA arenas.

Not that the OS can’t do better. Modifications to the basic scheduler to give a
small chance for a preferred processor to free up (like maybe for a half a
millisecond) before sending it to a different physical processor may provide
improved results. We will need a lot of testing to optimize that idea out!

While we are on the subject of improving the system, a couple of other design
notes. We fundamentally believe that the HAL clock quantum (10-15ms) is far
too slow for the processor speeds today. This hasn’t changed since before a
600mhz uni-processor was a screaming machine. Time for a change here folks!
Also, the OS performs some background functions, such as managing the free
memory pool only once a second. I t is probably time to speed that up on high-
end systems as well.

White Paper: Processor Affinity 15/16 © TMurgent Technologies

Conclusion
In this paper, we described processor affinity and how it is used. We show some
simple tools that you can use to view and manipulate affinity. We also describe
some situations in which affinity has been used in the past.

Although we hint to it earlier in the paper, finally, we provided our
recommendation on the place of affinity. Our purpose is to guide the reader to
use their head for what is important to their system, rather than jumping on a
bandwagon of something that “sounds cool”.

As always, we strongly recommend that customers thoroughly test any ideas,
software, or configuration changes initially on test systems before introducing
changes to a production system.

White Paper: Processor Affinity 16/16 © TMurgent Technologies

References and useful links
The following are useful references, some of which were used in the development of this White
Paper.

Ref 1 Scheduling Priorities: Everything you never wanted to know about OS Multi-
tasking, TMurgent Technologies, July 2003,
http:/ / www.tmurgent.com/ SchedulingWP.htm

Ref 2 SysI nternals Web Site. SysInternals provides a wonderful variety of tools and articles
to investigate the Windows Operating System. http:/ / www.sysinternals.com

Ref 3 Perceived Performance: Tuning a System for What Really Matters, TMurgent
Technologies, September 2003.
http:/ / www.tmurgent.com/ images/ perceivedperformance.pdf

Ref 4 Administering SQL Server, Microsoft Corporation.
http:/ / msdn.microsoft.com/ library/ default.asp?url= / library/ en-
us/ adminsql/ ad_config_6rw2.asp

